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Abstract

The class-specific (CS) method of signal classification operates by computing low-dimensional

feature sets defined for each signal class of interest. By computing separate feature sets tai-

lored to each class, i.e., class-specific features, the CS method avoids estimating probability

distributions in a high-dimension feature space common to all classes. Building a CS classi-

fier amounts to designing feature extraction modules for each class of interest. In this paper

we present the design of three CS modules used to form a CS classifier for narrow-band sig-

nals of finite duration. A general module for narrow-band signals based on a narrow-band

tracker is described. The only assumptions this module makes regarding the time evolution

of the signal spectrum are: (1) one or more narrow-band lines are present, (2) the lines wan-

dered either not at all, e.g., CW signal, or with a purpose, e.g., swept FM signal. The other

two modules are suited for specific classes of waveforms and assume some a priori knowl-

edge of the signal is available from training data. For in situ training, the tracker-based

module can be used to detect as yet unobserved waveforms and classify them into general

categories, for example short CW, long CW, fast FM, slow FM, etc. Waveform-specific

class-models can then be designed using these waveforms for training. Classification results

are presented comparing the performance of a probabilistic conventional classifier with that

of a CS classifier built from general modules and a CS classifier built from waveform spe-

cific modules. Results are also presented for hybrid discriminative/generative versions of the

classifiers to illustrate the performance gains attainable in using a hybrid over a generative

classifier alone.



1 Introduction

The classical Bayesian classifier computes a common feature space for all classes of inter-

est from which the probability density function (PDF) of the features is estimated. If the

dimension of the feature space is too high, severe errors in estimating its PDF will occur,

resulting in classification errors. Additionally, the amount of training data required to ac-

curately estimate the PDF increases exponentially with feature dimension [1]. If the feature

dimension is too low, the signal classes will overlap in feature space, again causing classifi-

cation errors. This tradeoff is what is known as the “curse of dimensionality.” Although

to a lesser degree, this also affects discriminative classifiers which must construct decision

boundaries in a high dimensional space.

The class-specific (CS) method of signal classification [2] avoids the curse of dimen-

sionality by computing individual low-dimensional feature sets defined for each class, i.e.,

class-specific features. A PDF projection operator, which amounts to a data-dependent

correction term depending on the feature transformation, is applied to the feature PDFs to

convert them back to likelihood functions defined on the raw data domain where classifica-

tion decisions are made. The fundamental building block of a CS classifier is the feature

extraction module. Each module computes features specific to a given class as well as its

corresponding PDF projection operator. Multiple modules can also be linked in series to

form more sophisticated processing chains.

Classifiers which seek to discriminate between classes without attempting to estimate

the PDFs are called discriminative classifiers, while those that seek to fully describe a class

by modeling the PDF are called descriptive classifiers. They are also called generative clas-

sifiers because, being statistical models, they may be used to generate synthetic data. In

the limit, both types of classifiers are equivalent because if each class is fully described, all

the information exists to discriminate. Classical theory can be regarded as both generative

and discriminative since the likelihood ratio forms a decision boundary which is discrimi-

native. There has been some attention paid recently to the comparison of generative and

discriminative approaches to classification [3],[4]. The widely-held belief is that discrimi-
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native classifiers outperform generative approaches - simply because generative approaches

attempt to solve a more difficult problem than necessary. In other words, while the end goal

is to draw decision boundaries in the feature space, the generative approach does so as a

by-product of attempting to solve the more difficult PDF estimation problem - while the

discriminative approach estimates the decision boundaries directly. There is ample evidence

that discriminative approaches outperform generative approaches in one-to-one comparisons

[4],[5]. This has led to the large amount of attention paid to discriminative approaches, most

notably, support vector machines (SVM)s [6],[7]. Why then use the CS method, which is a

generative method?

There are two ways to answer this question. The first answer, the least important but

necessary to say nevertheless, is that just as there are cases when a discriminative classifier

can outperform a generative classifier, there are cases when a generative classifier performs

better. There has been increasing recognition of the strengths of the generative approach

under some conditions [8]. But the fact that errors of discriminative and generative ap-

proaches are largely uncorrelated [9] has opened the door to a number of hybrid approaches

that have made performance advances over SVMs by combining the two approaches into a

single classifier [9],[10],[11],[12].

The second and more pertinent answer is that there is something misleading about the

question itself. Discriminative classifiers have only been shown to outperform generative

classifiers operating in the same feature space. It does not at all recognize that each class

may be best characterized using a different set of parameters and therefore different feature

space. While the discriminative classifier is forced to operate in a common high-dimensional

feature space, who is to say that a generative classifier does not exist that operates in a totally

unexpected way, using a different low-dimensional feature space to describe each class, that

outperforms the discriminative classifier operating in a high-dimensional space? Most so-

called generative classifiers in the literature are not truly generative. This is because they

operate in a feature space made up of features selected for their discriminative power. Their

ability to generate raw data is questionable. Instead, they generate a set of synthetic features
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from which we would have a difficult time generating synthetic samples of raw data. For this

reason, the full potential of the hybrid idea is not fulfilled. The only way to fully exploit the

hybrid idea is to develop the very best possible generative classifier that is not restricted to

use a common set of features and the features do not need to be selected for discrimination

power. The CS method provides a formal approach to finding the best features and models

for a particular problem.

The two primary objectives of this paper are: (1) to present the development of new

modules for a CS classifier and demonstrate their utility by using them to build CS classifiers

and (2) to demonstrate the performance gains possible from using a hybrid classifier by

developing hybrid discriminative/generative classifiers from the CS classifiers.

Each new CS module that is developed extends the applicability of the CS method.

In this paper, we present three modules designed to form CS classifiers for finite-duration

narrow-band signals. One is a general module which is based on a narrow-band tracker

and makes few assumptions about the spectral content of the signal. It assumes only

that the signal contains one or more narrow-band spectral lines and that these lines either

remain at a constant frequency or change frequency in a characteristic way over time. This

module can be used as the building block for a classifier which assigns signals to broadly

defined categories. The versatility of such a classifier is that it allows for the classification of

previously unforeseen waveforms. The other two modules are appropriate for specific types

of waveforms and assume some a priori knowledge of the signal is available from training

data. Of these, one is applicable to frequency modulated (FM) signals and computes as

features autoregressive coefficients from matched-filtered, segmented data. Knowledge of the

time-frequency distribution of the FM waveform is required in designing the matched filter.

The other module is trained as a joint class-model for narrow-band signals plus autoregressive

noise. It uses training data to compute a signal subspace from the spectrum of the waveform.

A noise subspace is generated from the set of cosine basis functions corresponding to the

computation of the autocorrelation function. Features are then computed as the projection

of the segmented data’s spectrum onto the signal and noise subspaces.
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Following a brief overview of the CS classification method in the next section, we will

describe the three modules in Section 3. Data results using CS classifiers built from the

modules will be presented in Section 4. The results of the CS classifier will be compared to

that of a conventional classifier. Results using hybrid classifiers developed from the generative

classifiers will be presented to illustrate the performance improvement gains in using a hybrid

classifier over that of using the generative alone.

2 Summary of Class-Specific Method

We present here a brief overview of the CS method and some of the fundamental concepts

in designing a CS feature module. For a detailed description of the CS method, the reader

is referred to [2], [13].

A CS feature module computes features zi from the raw data x, where the features

computed by module i are specific to the ith data class of M class hypotheses Hi. Using

CS features enables the feature spaces to be of low dimension. Therefore, the PDF of the

features p(zi|Hi) for each data class i = 1, ..., M can be accurately estimated using training

data.

To classify a raw data event x, the CS method computes features corresponding to each

class zi = Ti(x), evaluates the likelihoods p̂(zi|Hi), and then converts the likelihoods back

to the raw data domain, where classification decisions are made, using the PDF projection

operator as

pp(x|Hi) =
p(x|H0,i)

p(zi|H0,i)
p̂(zi|Hi), (1)

which is an approximation to p(x|Hi). The ratio

J(x, Ti, H0,i) =
p(x|H0,i)

p(zi|H0,i)
(2)

in (1) is the PDF projection operator which is called the “J-function.” This operator

converts the feature PDFs to raw data PDFs. It is very important that the J-function be

accurate such that pp(x|Hi) results in a valid PDF. The J-function is based on a CS refer-

ence hypothesis H0,i and allows for a fair comparison of likelihoods computed from different
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feature sets. The primary consideration in selecting an H0,i is that both the numerator and

denominator of the resulting J-function can be written in closed form, or else to a good

approximation, out to the (far) tails of the distribution. Another important consideration

is that in-class variations are compactly described with respect to H0,i. This results in a

low-dimensional feature set. For example, if Hi is a sinusoid in white noise, then H0,i should

not be selected to be a colored noise assumption. Choosing a white noise assumption for

H0,i would only require computing features of the sinusoid to distinguish Hi from H0,i. Al-

ternatively, a colored noise assumption for H0,i would require computing additional features

of the background noise to distinguish Hi from H0,i. One mitigating factor is that no matter

which H0,i is chosen, as long as the primary consideration is met, the PDF projection the-

orem guarantees that the result is a PDF. Given that, likelihood comparisons can be used

to empirically evaluate the choices made for H0,i and feature selection. Further guidance in

selecting an appropriate H0,i and a procedure for validating the accuracy of the J-function

are given in [2]. Substituting (1) into the expression for the optimal Bayesian classifier given

by

i∗ = arg max p(x|Hi)p(Hi), i = 1, ..., M, (3)

where p(Hi) is the prior probability of class Hi, results in the CS classifier,

i∗ = arg max
p(x|H0,i)

p(zi|H0,i)
p̂(zi|Hi)p(Hi), i = 1, ..., M. (4)

The general form of a CS feature module computes features zi = Ti(x) and the associated

J-function J(x, Ti, H0,i).

Feature modules can also be linked in a serial processing chain to compute additional

transformations and conditioning of features. The overall J-function for this configuration

is equal to the product of the J-functions of each of the modules in the chain. In the case

of computing log-likelihoods, the overall J-function would be the sum of the log J-function

values of each module. Assuming a processing chain consisting of 3 modules, (1) would

become

log pp(x|Hi) = j1 + j2 + j3 + log p̂(z|Hi), (5)
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where jl is the log of the J-function of module l, and z is the feature vector computed by

module 3.

3 Class-Specific Feature Modules

In this section, we present the three CS feature modules designed for narrow-band signals.

These modules compute features based on the frequency spectrum of the data. The first of

these is called the class-specific tracker and is a general module applicable for a wide range of

waveforms. The other two modules are waveform specific and require prior knowledge of the

signal of interest’s spectrum for training. Used together, the general and specific modules can

be combined to form a versatile classifier for in situ training. As new unforeseen waveforms

are detected by the general class-models, a small number of these events can be used to train

a specific class-model which can then be added to the classifier. Additionally, as new types

of false alarms are detected, they also can be trained away using specific class-models.

3.1 Class-Specific Tracker

The class-specific tracker (CST) was developed out of the need to have a general module

applicable to a variety of narrow-band signal types. A good set of features to use to observe

the duration and variation of the spectral lines would be the spectrogram bins of the signal.

For example, using the sequence of bin observations over time to train a hidden Markov PDF

model for each general class. However, using the spectrogram bins would result in a high-

dimensional feature set and as such would be impractical for PDF estimation. Instead, we

propose the CST as a novel approach to this problem. The CST uses a narrow-band tracker

combined with Bayes’ theorem to efficiently compute log-likelihoods using spectrogram bins

as features.

The CST begins by computing the spectrogram of the data using non-overlapping, rect-

angular windowed segments. We assume only that the spectrogram contains one or more

spectral lines and that these lines either remain at a constant frequency or change frequency
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in a characteristic manner, e.g., swept FM waveform. The spectrogram is thresholded to

detect narrow-band lines and then input to a narrow-band tracker which tracks the spectral

lines computing a number of statistical parameters describing each line tracked, e.g., track

velocity, bandwidth, and age. These parameters are utilized in computing the PDF of the

spectrogram bins. An example tracker output surface is shown in Fig. 1 for a hyperbolic FM

signal. The white dots connected by line segments is the track of the signal. The individual

dots are random spectral lines that were detected, but resulted in no tracks.

To efficiently compute the PDF of the spectrogram, the CST uses Bayes’ theorem to

decompose the PDF of the spectrogram into a product of conditional PDFs. Assume a N -

point fast Fourier transform (FFT) is used to compute the spectrogram of a raw data event

consisting of a narrow-band signal in Gaussian noise. Define y(k) as the length N/2 + 1

vector of spectrogram bins (non-negative frequencies) of the real-valued raw data time-series

vector x(k) for time-block segment k. We can write the PDF of the spectrogram as

p(y(1),y(2), ...,y(K)) = p(y(1)) p(y(2)|y(1)) p(y(3)|y(1),y(2)) ... p(y(K)|y(1), ...,y(K−1)),

(6)

where K is the total number of time-block segments. While (6) is an exact equation, we will

approximate each term only “in spirit.” Each term is of the form p(y(k)|y(1), ...,y(k − 1))

which we approximate by developing a PDF estimate for segment k based only on information

from prior segments up to and including segment k − 1. We propose to approximate the

expected power spectrum of the current segment based on prior segments. From prior

segments, we can track the frequency, frequency rate, bandwidth, and amplitude of any

existing narrow-band signals, plus the smooth background noise spectrum. These parameters

can then be extrapolated to the current segment using tracker parameters to derive an

estimate of the current segment’s spectrum. The power spectrum estimate that we derive

from prior segments, evaluated at each FFT bin frequency, will be used as a mean estimate

of each magnitude-squared FFT bin in the current segment. The expected value of the n-th

magnitude-squared FFT bin for segment k, derived from previous segments, is denoted by

µn,k.
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It is well known that for any zero-mean Gaussian input, the magnitude-squared FFT

bins are central chi-square random variables. The first bin (zero frequency) and N/2 + 1

bin (half sample rate) are real and therefore chi-square with 1 degree of freedom. The

remaining (complex) bins are exponentially distributed (central chi-square with 2 degrees

of freedom). Since we have not used a data window function in computing the FFT, i.e.,

we used a rectangular window, we have some justification to use the large-N approximation

that the bins are statistically independent [14], although the underlying assumption for this

approximation is that the spectrum is smooth, which is contradictory to the existence of

narrow-band signals. Nevertheless, we find the approximation to be useful. We also assume

conditional independence of the segments. This essentially ignores any sample-to-sample

correlation that occurs between the abutting samples in adjacent segments. Based on these

assumptions, we can write the conditional PDF of y(k) as

p(y(k)|y(1), ...,y(k − 1)) '
e−y1(k)/(2µ1,k)

√
2πy1(k)µ1,k

·
e−yN/2+1(k)/(2µN/2+1,k)

√
2πyN/2+1(k)µN/2+1,k

·
N/2∏

n=2

[
1

µn,k
exp

{
−yn(k)

µn,k

}]
,

(7)

which is a product of chi-squared univariate PDFs with 1 degree of freedom for bins 1 and

N/2+1, and 2 degrees of freedom (exponential) for bins 2 through N/2. In all cases, µn,k is

the mean of the distribution for bin n. In the log domain,

log p(y(k)|y(1), ...,y(k − 1)) ' −
1

2
log {2πy1(k)µ1,k} −

y1(k)

2µ1,k

−
1

2
log

{
2πyN/2+1(k)µN/2+1,k

}
−

yN/2+1(k)

2µN/2+1,k

+
N/2∑

n=2

[
− log µn,k −

yn(k)

µn,k

]
. (8)

Note that while this is an approximation (we use '), it is an exact form for a PDF, so it

integrates identically to 1. The importance of this is that after we combine p(y(1), ...,y(K))
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with the J-function to obtain the raw data PDF, we have an exact form of a raw-data PDF.

To abide by the spirit of (6), the mean value of each bin µn,k for segment k can only be

determined from information obtained from segments up to and including segment k − 1.

Therefore, we need a procedure of predicting the values of µn,k using prior information.

An iterative procedure to predict the values of µn,k at segment k from prior information

was devised using Gaussian mixture (GM) modeling and the tracker velocity estimates.

Note that we are using the GM not as a statistical model of the N/2 + 1 dimensional

space, but instead as a smooth function composed of a sum of Gaussian-shaped functions to

approximate the spectrogram at each time step. First, a GM model is fit to the spectrogram

segment, y(k− 1). Gaussian modes are placed centered on the bin of each significant peak,

as determined by the tracker, in y(k−1). Two additional single-sided Gaussian modes (i.e.,

extending from their mean value in a single direction only), whose standard deviation is

fixed such that each encompasses one-half of the frequency spectrum, have their means fixed

at bins n = 1, N/2 + 1 to model the power spectrum of the noise. If no significant peaks

were indicated from the tracker information for segment k, the GM model would consist

of only a model of the noise. The GM model of y(k − 1) is then input to a expectation-

maximization (EM) algorithm which finds the set of GM parameters producing the best

model. These parameters consist of the peak bin locations, the standard deviations of the

GM modes and their associated mixing weights. Let the GM model of y(k−1) produced by

the EM algorithm be denoted as ỹ(k − 1). From the tracker velocity estimates at k − 1, we

can predict the locations of the peaks at k. Using the GM parameters for ỹ(k − 1) except

replacing the given peak bin locations at k − 1 with the predicted peak locations results

in a GM model producing the predicted mean values µn,k. These values are then used in

computing the conditional log-PDF in (8) for segment k. In this manner, we can compute

the log-PDF of the spectrogram log p(y(1), ...,y(K)) as the sum of the conditional log-PDF

terms over all of the segments k = 1, ..., K.

Suppose the first appearance of a spectral line in a given bin, i.e., the first sample in a

track, begins at time k1. At time k1 − 1, the predicted GM model for y(k1) computed from
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y(k1 − 1) would not be able to anticipate the advent of this new track. Therefore, this

abrupt onset will result in (7) computing a poor PDF estimate since µn,k for the bin will have

been estimated assuming noise only. To compensate for abrupt bin amplitude changes an

alternative method to (7) is to use a exponential mixture PDF to compute the conditional

PDFs. This PDF combines (7) with an additional exponential PDF of fixed mean µ0 to

model the onset of spectral lines as

pm(y(k)|y(1), ...,y(k − 1)) = (1 − α)p(y(k)|y(1), ...,y(k − 1)) + αp0(y(k)) (9)

with

p0(y(k)) =
N/2+1∏

n=1

1

µ0
exp

{
yn(k)

µ0

}
(10)

and mixture weight α � 1. Training data is used in an EM algorithm to optimize the values

of µ0 and α for a given signal class. The value of µ0 is typically determined to be on the

order of the magnitude of a spectral peak for the given signal class.

As described in Section 2, the CS method converts likelihoods from feature space back

to the raw data domain where classification decisions are made. The log J-function for the

magnitude-squared DFT (i.e., for the feature transformation that produces y(k) from x(k)),

assuming an H0 of independent zero-mean Gaussian noise of variance 1, is found in [2] and

can be simplified to

J(x(k)) = log

{
p(x(k)|H0)

p(y(k)|H0)

}

= −(N/2 − 1) log 2π + N/2 log N +
1

2

(
log y1(k) + log yN/2+1(k)

)
. (11)

Because H0 assumes independent Gaussian noise at the input of the module, the segments

are independent. Thus, the complete PDF of the raw data is

log p(x(1),x(2), ...,x(K)) = log pm(y(1),y(2), ...,y(K)) +
K∑

k=1

J(x(k)). (12)

To use the CST as a class-model for a given general signal class, training data repre-

sentative of the signal class is used to optimize some of the tracker parameters. For our

purpose, we have defined five general signal classes as short continuous wave (CW), medium
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CW, long CW, slow FM, and fast FM. The first step in training the module for each of

the signal classes is to determine the optimum FFT size N for each. Using training data

and a nominal set of tracker parameters, the log-likelihood log p(x(1),x(2), ...,x(K)|N) is

computed for a given value of N over each of the training events and summed to form a total

log-likelihood. For this stage, the mixture weight, α, in (9) is set to 0. The value of N which

achieves the highest log-likelihood is used for that class. Note that in practice FFTs com-

puted from overlapped data segments can be used to produce more stable tracks provided

only the spectrogram segments appropriate to maintain statistical independence of the bins

are used to compute (12). For example, if 50% overlapped data segments are used, then

(12) is computed using only the odd indexed spectrogram segments y(1), y(3), y(5), etc.

Next, the parameters for the mixture PDF µ0 and α are optimized for each class using the

previously determined value of N . This is done using an EM algorithm to perform an

iterative search over the mixture parameters until the total log-likelihood converges. The

EM algorithm is initialized using a small value for α � 1 and a value for µ0 on the order of

the average amplitude of the spectral peaks for the given training data. Finally, using the

previously determined values of N , µ0, and α for each class, the tracker parameters λ and

w are optimized for each class. The parameter λ is the target maneuvering index. The

vector w is a two-element vector of association-window width parameters. The first element

defines how far away, in FFT bins, a threshold crossing can be from an existing track. The

second element defines how close two tracks can be before one of them is eliminated. An

iterative approach is used to search over λ and w which moves along a path of increasing

total log-likelihood until convergence. This results in a set of CST parameters for each class

which define the class-model for the given class. For each class i = 1, ..., 5, we have the
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parameters

θi =




Ni

µ0i

αi

λi

wi




. (13)

The CST can be used as a class-model for each of the five general signal classes by applying

the appropriate parameter set. A 5-class classifier can be built by processing data through

a parallel set of 5 CSTs, each parametrized by one of the θi.

3.2 Class-Specific Module for Frequency Modulated Signals

When the signal of interest is a known FM signal, the module described next can be trained

as a class-model for it. The first stage of the module applies an all-pass matched filter

(MF) to pulse compress the FM signal of interest. Prior knowledge of the time-frequency

trajectory of the FM signal is therefore required to design the replica for the MF. The

design of a unique MF replica is required in order to work within the CS paradigm. A MF

replica which results in an all-pass transformation was designed as a one-to-one mapping

that has a Jacobian with a unit determinant. This eliminates the requirement to derive a

J-function (see [13]). The MF replica has the magnitude spectrum of an all-pass filter while

still producing the desired pulse compression. This replica uses a combination of linear FM

(LFM) signals with a replica of the FM signal of interest. The LFM signals are used to fill

out the spectrum in the bands outside of the FM signal’s band. As a synthetic example,

Fig. 2 shows the power spectral density and the time-frequency distribution of such a replica

for a hyperbolic FM (HFM) signal. The HFM signal has a bandwidth from 20 to 30 kHz.

One LFM signal is inserted prior to the HFM signal which sweeps from 0 to 20 kHz and

another is appended to the HFM signal which sweeps from 30 to 50 kHz (one-half of the

sampling frequency for this example). The LFM signals were designed to ensure that phase

continuity was maintained at the LFM-HFM transitions.
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Implementation of the MF in the module is done in the frequency domain. An FFT of

the replica is computed and it’s spectrum is conditioned such that the magnitude of each of

the bins is normalized to one. Because the magnitude of each bin is constrained to equal

one, this results in an all-pass filter. This normalized spectrum is multiplied with the input

signal’s FFT and the resulting spectrum is transformed back to a time series using an inverse

FFT.

The overall processing performed by the module is relatively straightforward. A detailed

description of the steps taken in the progression of the development of this module is given

in [15]. The final design will be presented here. The first step in the module is to apply the

MF described above to the input signal which is then input to a CS module that computes

autoregressive (AR) coefficients as features. A detailed description of the AR module as well

as the derivation of it’s J-function are given in [2]. The basic operation of the AR module

is to segment the input time-series into N -sample segments and compute a P th order AR

model for each segment, where the values of N and P are specific to a given signal class.

This is followed by some conditioning of the AR coefficients to better facilitate estimating

the PDF of the features using a GM model. A hidden Markov model (HMM) is then used

to statistically model the sequence of AR features. Training the module for a given FM

signal class consists of using training data to perform a joint optimization over N and P

to determine the values that maximize the total log-likelihood. Note that an ideal input

signal will appear as a short pulse at the MF output having the same spectral character as

the input. In this case, a small value of N will be appropriate. However, with distortion,

imperfect replicas, etc. the energy will be spread in time requiring a larger value of N . The

value of P should be sufficient to represent the signal spectrum.

3.3 Spectral Projection Class-Specific Module

The spectral projection (SP) module for CS feature extraction is applicable to CW signals

consisting of one or more tones. It is also applicable to narrow-band pulses and FM signals

after processing with a matched filter. The SP module is trained as joint class-model for CW
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signals plus autoregressive noise. It uses training data to generate a signal subspace from

the spectrum of the signal class of interest. Stationarity of the spectral peaks is necessary

so that the signal subspace be low rank, thereby producing a low-dimensional feature space.

Features are computed by projecting the spectrogram of the data onto the signal and noise

subspaces. The noise subspace is generated from a subset of the cosine basis functions used

to compute the autocorrelation function (ACF).

The first stage in training the SP module for a given signal class is the determination

of the signal subspace. Using training data, spectrograms for all of the training events

are computed by segmenting each event into L-sample segments and computing an N -point

FFT over each segment. Note that if the signal of interest is an FM signal it must be

matched filtered, using the matched filter described in Section 3.2, prior to computing the

spectrograms. It is assumed that L ≥ N and that L is evenly divisible by N . With

L > N , L
N

N -point spectrograms are computed and averaged together for each segment.

The spectrograms over all of the training events are collected together as the columns of

the matrix Y = [y(1), ...,y(J)]. An eigen-decomposition of YYH is then computed as

YYH= UΣUH , where the columns of U are the eigenvectors and the diagonal elements of

Σ are the corresponding eigenvalues of YYH . The eigenvectors corresponding to non-zero

eigenvalues are the basis vectors for the column space of Y.

Generation of the noise subspace is based on computing the ACF of the segmented data.

The assumption here is that the noise background will be broadband in nature and can be

well represented by a small number of ACF lags. The first P +1 ACF lags can be computed

from the spectrogram as

rk =
1

N2

N/2+1∑

i=1

yiεi cos

{
2π(i − 1)k

N

}
, k = 0, 1, ..., P, (14)

where εi = 1 for i = 1, N/2 + 1, and εi = 2 for i otherwise. Equation (14) can be written

equivalently in matrix form as

r = CTy, (15)
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where the columns of the matrix C = [c0, ..., cP ] are the cosine basis functions

cT
k = εi cos

{
2π(i − 1)k

N

}
, i = 1, ..., N/2 + 1 (16)

used to define the noise subspace.

Utilizing the eigen-decomposition of YYH , we create orthogonal spectrogram G and

noise subspaces using the projection

G = P⊥UΣUHP⊥, (17)

where

P⊥ = I − C(CTC)−1CT (18)

is the projection matrix onto the subspace orthogonal to the noise subspace. An orthonor-

mal basis set for the column space of G is then computed using the eigen-decomposition

G = UGΣGUH
G . The eigenvectors in UG corresponding to non-zero eigenvalues are the

basis vectors for the spectrogram subspace. We can visually compare the eigenvectors in

UG with the known spectra of the signal class of interest to select which eigenvectors to use

to define the signal subspace. This approach is useful when the training data is corrupted by

interferers or events from other signal classes. The spectra of these signals will also appear

as basis vectors in UG and need to be identified and eliminated. Let those eigenvectors

selected to define the signal subspace be collected in order of significance as the columns of

the matrix S = [s1, ..., sρ] where ρ is the rank of the signal subspace. From this we can

define a matrix of basis vectors for both the signal and noise subspaces as the concatenation

A = [C;S]. This matrix containing the trained signal subspace will be used by the SP

module for feature extraction.

To compute features for a given signal class, the SP module begins by computing the

spectrogram of the data in same manner that was used in training the signal subspace as

discussed above. That is, the data is segmented into L-sample segments and the spectro-

gram of each segment is computed using an N -point FFT. The values of L and N used in

computing features are the same as those used in training the signal subspace. As before
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if the SP module is being used as a class-model for an FM signal class, the data must be

matched filtered using a replica of the FM signal prior to computing the spectrogram. The

spectrogram segments y(k) are then projected onto the signal and noise subspaces as

z(k) = ATy(k), (19)

resulting in a sequence of feature vectors z(1), ..., z(K). The J-function for (19) assuming a

reference hypothesis of zero-mean Gaussian RVs of unit variance is derived in [16]. Condi-

tioning of the features is then performed to aid in estimating their PDF using GM modeling

as follows. The noise subspace projection (ACF) features are first converted to reflection

coefficients and then a log-bilinear transformation is applied. The signal subspace projec-

tion features are normalized by the magnitude of the projection onto s1. The J-functions for

these conditioning operations are derived in [2]. A HMM is used to statistically model the

feature sequence produced by (19).

4 Classification Results using Synthetic Data

To test the performance of the modules, classification experiments were conducted using

synthetic data. Synthetic training and testing data for six different classes of waveforms

were generated. Of these, three were a type of CW signal and three were a type of FM

signal. Using these data sets, experiments were conducted on a general category hybrid

discriminative/CS classifier built from trained CST modules and a 6-class CS classifier built

from trained SP modules. For comparison, experiments were also conducted on a 6-class

hybrid discriminative/probabilistic conventional classifier using a 10-dimensional feature set.

The results demonstrate the classification performance improvement for the CS classifiers

over the conventional when only a small number of training events are available.

4.1 Synthetic Data Sets

The synthetic signals generated for training and testing the classifiers consisted of six different

waveform types which we will describe here. We will designate the signal classes as Ping
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1 through Ping 6. Training and testing events generated for all of the waveform types

consisted of 110,000 time samples for each event at a sampling frequency of 100 kHz.

Ping 1 is comprised of two simultaneous CW pulses at 31.0 kHz and 34.25 kHz each of

0.013 s duration. A smaller amplitude reverberation component of random duration for

each event of between 0.01 s and 0.04 s is appended to both pulses. An example of Ping 1

along with its spectrogram is shown in the left half of Fig. 3. Ping 1 would be considered a

short CW signal under the general signal classes.

Ping 2 is a single CW pulse of random frequency 31.25 ± 0.20 kHz for each event of

duration 1.0 s. An example of Ping 2 and its spectrogram are shown in the right half of

Fig. 3. Ping 2 would be considered a long CW under the general signal classes.

Ping 3 is a HFM signal which sweeps from 35.5 kHz to 34.0 kHz in 0.03 s. The left half

of Fig. 4 shows an example of Ping 3 and its spectrogram. Under the general signal classes,

Ping 3 would be considered a slow FM signal.

Ping 4 is a HFM signal which sweeps from 38.75 kHz to 33.5 kHz in 0.064 s. An example

of Ping 4 along with its spectrogram is shown in the right half of Fig. 4. Ping 4 would be

considered a fast FM under the general signal classes.

Ping 5 is a HFM signal which sweeps from 30 kHz to 40 kHz in 0.1 s. The left half of

Fig. 5 shows an example of Ping 5 and its spectrogram. Under the general signal classes,

Ping 5 would be considered a fast FM signal.

Ping 6 consists of three consecutive CW pulses each of 0.09 s duration and frequencies

30 kHz, 31.75 kHz, and 31 kHz, respectively. A smaller amplitude reverberation component

of duration 0.04 s is appended to the last pulse. An example of Ping 6 along with its

spectrogram is shown in the right half of Fig. 5. Ping 6 would be considered a medium CW

under the general signal classes.

Two independent data sets, one for training and one for testing, using these synthetic

signals were generated for the classification experiments. For training, a set of 100 events was

generated for each signal class, i.e., Ping number. Each event was generated at a randomly

selected signal-to-noise ratio (SNR) uniformly distributed over the range given in Table I.
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The ranges of SNR were selected to be in the region where the conventional classifier’s

performance degraded in classifying the given Ping number. Testing data consisted of 200

events of each Ping number, resulting in a total of 1200 events, all generated at the lowest

SNR used in the training data for the given Ping number as given in Table I.

4.2 Conventional Classifier

A 6-class hybrid discriminative/probabilistic conventional classifier was designed using a 10-

dimensional feature set. The feature set was based on signal parameters which intuitively

should provide good separability of the signal classes. These features are based on the CW

characteristics of the signal. The features are called: CW len 64, CW f 64, CW amx 64,

CW amxn 64, CW len 128, CW f 128, CW amx 128, CW amxn 128, CW f 256, CW a 256,

and we will explain them presently. They are all computed from the magnitude-squared

spectrogram of the signal using an N -point FFT. The features CW amx N and CW amxn N

assume there exists a signal in one FFT bin at one time slice of the spectrogram. The com-

putation of CW amx N proceeds by normalizing the spectrogram for each time slice by the

total power in that time slice. Next, the largest normalized bin for each time slice is identified

with CW amx N being the maximum of these values. Computation of CW amxn N is done

in the same fashion with the exception that the spectrogram at each time slice is normalized

by the power in a range of bins surrounding the given bin instead of the total power in the

time slice. The features CW a N , CW f N , and CW len N assume that the signal is spread

over multiple time slices, but remains in a single FFT bin. Computation of these features

proceeds by passing the time sequence of each FFT bin into a bank of integrators of various

integration window lengths. Next, the bin with the largest integrator peak is identified with

CW f N being the frequency of the given bin, CW a N is the integrator peak value, and

CW len N is the integrator’s window length.

A conventional Bayesian classifier was used for the generative stage of the hybrid classifier

and assumed that all of the classes were equally likely. The PDFs of the features for each of

the six signal classes were estimated from the training data sets using GM models. An EM
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algorithm was used to estimate the GM parameters combined with a heuristic approach to

determine the appropriate number of GM modes based on the given training samples. For

the discriminative stage, classification rules were constructed for each of the signal classes

using the features extracted from the training data. These rules were manually designed

by comparing pairs of features in feature space for a given signal class versus the remaining

signal classes. When a pair of features is observed which provides reasonable separability

between the given signal class and the remaining classes, a rejection boundary can be drawn

between the classes. This rejection boundary serves as a classification rule designed to

reject events whose computed features lie outside of the boundary for the given signal class.

The rules are applied to the data after the evaluation of the feature log-likelihoods across

the class models. If an event’s log-likelihood is maximum for a given signal class, but it

violates the signal class’ classification rule, it is assigned to the signal class with the highest

log-likelihood for which the class’ rule is not violated. If an event violates the rules for all

of the signal classes it is assigned to “None” meaning it does not belong to any of the signal

classes.

The results of processing the testing data with the 6-class hybrid conventional classifier

are shown in Fig. 6 with respect to percentage of correct classification. To observe the

impact the classification rules have on performance, results were generated with and without

applying them to the data. The bar to the left of the Ping number is the classification result

obtained without applying the classification rules (generative classifier only) and the bar to

the right is that with applying the classification rules (hybrid classifier). The corresponding

confusion matrices for the classification experiment are given in Tables II and III, where the

columns are the Ping numbers and the rows are the signal classes. In four out of the six

signal classes, the classification performance improved when the rules were applied. The

classification performance in processing Ping 1 and Ping 5 decreased with the application of

the rules. This is likely due to the small number of training events. Since the training data

was generated over a range of SNR and the testing data was generated at the lowest SNR

only, it is likely that an insufficient number of lowest SNR events were observed to properly
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draw the rejection boundary for the classes. This is also the reason why some of the Ping

4 and Ping 5 events were assigned to None with the application of the rules.

4.3 CST Classifier

A general category 5-class hybrid discriminative/CS classifier, for the general signal classes

defined previously in Section 3.1, was built from trained CST modules. Using the training

data, the CST modules were trained using the procedure discussed in the previous section.

The fast FM class-model was trained using the training data for Ping 4 only despite the

fact that Ping 5 is also categorized as a fast FM signal. This was done to evaluate the

robustness of the CST classifier in properly classifying a waveform type it had not trained

on. Classification rules were also constructed for the discriminative stage using statistics

derived from the narrow-band tracker as rule-based features. The rule-based features com-

puted for each event were the length of the longest track and the mean velocity, velocity

variance, and frequency variance along it. Additionally, log-likelihood ratio thresholds de-

termined from the training data were applied by each class model. The log-likelihood ratio

is computed as the difference between the log-likelihood of the event given the reference hy-

pothesis, log p(x|H0,i) where H0,i is white, zero-mean Gaussian noise of variance 1, and the

log-likelihood of each event given the ith class-model log p(x|Hi). A relative log-likelihood

ratio is also computed as the log-likelihood ratio divided by the event length. For a given

class model, if an event does not exceed the threshold for either the log-likelihood ratio or

the relative log-likelihood ratio that class model is eliminated from contention. If an event

does not exceed the thresholds of any of the class models, it is assigned to None.

The results of processing the testing data with the 5-class hybrid CST classifier are shown

in Fig. 7 with respect to percentage of correct classification. As before, the bar to the left of

the Ping number is the classification result obtained without applying the classification rules

(generative classifier only) and the bar to the right is that with applying the classification

rules (hybrid classifier). Tables IV and V show the corresponding results for the classification

experiment, where the columns are the Ping numbers (the general class the Ping belongs to is
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abbreviated in brackets next to the number) and the rows are the signal classes. In contrast

to the hybrid conventional classifier, in all cases the classification performance improved, or

for Ping 4 remained unchanged, with the application of the rules. Notice that although the

fast FM class-model was trained using only Ping 4 training data, it still achieved excellent

performance in correctly classifying Ping 5 as a fast FM signal. Overall, the hybrid CST

classifier demonstrated a significant performance improvement over the hybrid conventional

classifier.

4.4 SP Classifier

A 6-class CS classifier was built using trained SP modules as class-models for each of the Ping

types. Training of the SP modules was done following the training procedure given in the

previous section. The first step in training the SP module is determining the optimum FFT

size N from the training data for a given signal class. Recall that each event is segmented into

L-sample segments and an N -point FFT is computed for each segment. For the synthetic

data experiments we will assume the segment size and FFT size to be equal L = N . The

optimization process begins by selecting the signal subspace basis vectors for a given value

of N . We will assume P = 4 for the noise subspace. Using these parameters in the SP

module, features are computed by the module for all of the events in the training data. An

estimate of the PDF of the features is computed using a GM model. A total log-likelihood

for the given value of N is computed by evaluating the log-likelihoods of the features on the

log-PDF across all training events and summing them. This process is repeated over a range

of values for N . The value of N producing the maximum log-likelihood is used in the given

class model along with the associated signal subspace basis vectors. Features computed

from the training data using this value of N are used to train an HMM PDF model for the

feature sequence.

The 6-class SP classifier was comprised of trained SP modules for each of the six Ping

types. No rules or thresholds were applied by any of the class models. In processing

the testing data, the SP classifier achieved perfect classification performance as shown in
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the resulting confusion matrix given in Table VI. This is due to the fact that each class-

model was tailored for each Ping type by including more a priori information regarding the

spectrum of each Ping type. Given this, the SP classifier should also be robust as a function

of SNR.

5 Conclusion

The development of new feature extraction modules for the classification of narrow-band

signals using the class-specific (CS) method were presented. One was a general module based

on a narrow-band tracker which was designed to classify waveforms into general categories.

The others were designed for classifying specific classes of waveforms, where some a priori

knowledge of the signal is necessary. Results from classification experiments using synthetic

data were presented comparing the performance of classifiers built from these modules with

that of a conventional classifier using a 10-dimensional feature set. These results demonstrate

the increasing performance gains in using the hybrid discriminative/CS general classifier

over the hybrid discriminative/probabilistic conventional and that of using the specific CS

classifier over the general.

The CS classifiers out-performed the conventional classifier for the given number of train-

ing samples. This provides another example that given a small training data set the CS

method can provide a vast performance improvement over that of a conventional classifier

as was also demonstrated in [2]. The incorporation of classification rules into the generative

classifiers to form hybrid classifiers resulted in improved performance for most of the classes

with the conventional classifier. However, the CST classifier showed performance improve-

ment for all classes with the incorporation of classification rules in going from a generative

to a hybrid classifier. As expected, as more a priori information was mapped into the class

models, e.g., SP models, the performance improved further. Since it is assumed that not all

signals will be known a priori in most realistic applications, this suggests that a combination

of the general CST classifier and the SP classifier is most appropriate.
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Ping Train SNR Test SNR

1 [0, 6] dB 0 dB

2 [-10, -6] dB -10 dB

3 [-10, -8] dB -10 dB

4 [-10, -6] dB -10 dB

5 [-10, -6] dB -10 dB

6 [-6, 0] dB -6 dB

Table I: Range of SNR used for generating training and testing data.

Ping

1 2 3 4 5 6

1 52 0 4 13 8 49

2 0 0 0 0 0 0

3 0 0 144 27 9 0

Class 4 87 0 6 58 28 48

5 60 0 46 102 155 3

6 1 200 0 0 0 100

None 0 0 0 0 0 0

Table II: Confusion matrix for conventional classifier without applying classification rules.
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Ping

1 2 3 4 5 6

1 34 0 2 2 3 3

2 7 200 0 0 0 0

3 0 0 146 21 4 0

Class 4 50 0 47 152 29 0

5 108 0 5 4 130 24

6 1 0 0 0 0 173

None 0 0 0 21 34 0

Table III: Confusion matrix for conventional classifier with classification rules applied.

Ping

1(sCW) 2(lCW) 3(sFM) 4(fFM) 5(fFM) 6(mCW)

short CW 94 0 15 0 0 4

long CW 0 164 0 0 0 3

Class slow FM 101 0 166 9 11 2

fast FM 2 0 18 191 189 0

medium CW 0 36 0 0 0 191

None 3 0 1 0 0 0

Table IV: Classification results for CST classifier without applying classification rules.
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Ping

1(sCW) 2(lCW) 3(sFM) 4(fFM) 5(fFM) 6(mCW)

short CW 192 0 16 3 1 6

long CW 0 200 0 0 0 0

Class slow FM 3 0 183 6 2 0

fast FM 0 0 0 191 197 0

medium CW 0 0 0 0 0 194

None 5 0 1 0 0 0

Table V: Classification results for CST classifier with classification rules applied.

Ping

1 2 3 4 5 6

1 200 0 0 0 0 0

2 0 200 0 0 0 0

Class 3 0 0 200 0 0 0

4 0 0 0 200 0 0

5 0 0 0 0 200 0

6 0 0 0 0 0 200

Table VI: Confusion matrix for SP classifier.
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Example Tracker Output
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Figure 1: Example output surface from narrow-band tracker for a hyperbolic FM signal.

29



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−20

−15

−10

−5

0

5

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
)

Time

F
re

qu
en

cy

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

1

2

3

4

5
x 10

4

Figure 2: Power spectral density (top) and spectrogram (bottom) of example HFM replica

used for matched filtering.
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Figure 3: Time series and spectrograms of signal classes Ping 1 (left) and Ping 2 (right).
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Figure 4: Time series and spectrograms of signal classes Ping 3 (left) and Ping 4 (right).
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Figure 5: Time series and spectrograms of signal classes Ping 5 (left) and Ping 6 (right).
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Figure 6: Percent correct classification for conventional classifier. Bar to the left of Ping

number is performance without application of rules (generative classifier) and bar to right is

that with the application of rules (hybrid classifier).
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CST Classifier Results

Figure 7: Percent correct classification for CST classifier. Bar to the left of Ping number is

performance without application of rules (generative classifier) and bar to right is that with

the application of rules (hybrid classifier).
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